UNIVERSAL NEURAL VOCODING WITH PARALLEL WAVENET

Yunlong Jiao, Adam Gabryś, Georgi Tinchev, Bartosz Putrycz, Daniel Korzekwa, Viacheslav Klimkov

access the full

ICASSP 2021 Paper ID. 2386

Take a picture to

UNIVERSAL NEURAL VOCODING WITH PARALLEL WAVENET

Yunlong Jiao, Adam Gabryś, Georgi Tinchev, Bartosz Putrycz, Daniel Korzekwa, Viacheslav Klimkov

Take a picture to access the full paper on arXiv.org

ICASSP 2021 Paper ID. 2386

_••••

Agenda

- Motivation
- Research question
- Architecture
 - Parallel WaveNet (PW)
 - Universal Parallel WaveNet (UPW)
- Evaluations
 - Comparison with speaker-dependent vocoders
 - Comparison with other multi-speaker vocoders
- Conclusions

Motivation

- State-of-the-art neural vocoders are capable of synthesizing natural-• sounding speech.
- Most existing neural vocoders are either speaker-dependent, or have • not been evaluated sufficiently to support out-of-domain voices, styles, and languages.
- Training high-quality neural vocoders requires significant computational • resources and large amounts of audio data for each target speaker.
- A high-quality speaker-independent vocoder, or so-called **universal vocoder**, is key to scaling up production of TTS systems.

Research Question

Can we build universal non-autoregressive neural vocoder?

Architecture

Parallel WaveNet (PW)

- Transforms a sequence of input noise into audio waveforms using Inverse Autoregressive Flows
- Can synthesise samples very efficiently by fully exploiting the computational power of modern deep learning hardware
- Trained using Knowledge Distillation with WaveNet teacher

Recording

Speaker Dedicated PW

Baseline PW on multi-speaker data

))

Teacher Output $P(x_i | x_{< i})$

Generated Samples $x_i = g(z_i | z_{< i})$

Student Output $P(x_i|z_{< i})$

Input noise

Architecture

Universal Parallel WaveNet (UPW)

- We trained a universal neural vocoder based on Parallel WaveNet, using a multi-speaker multi-lingual highquality speech corpus.
- In order to train a universal vocoder, we propose an additional VAE-type conditioning network called Audio Encoder.

Note: At inference time, we use e = 0 to replace the output of AudioEncoder.

Recording

Speaker Dedicated PW

))

Baseline PW on multi-speaker data

Proposed Universal PW

Samples presented with Copyright 2021, Amazon.com, Inc. or its affiliates. All Rights Reserved

Comparison with speaker-dependent vocoders

Test set statistics

Test set	Recording quality	# Voices (seen / unseen)	# Styles (seen / unseen)	# Lang. (seen / unseen)
Internal	Very high	24 (21/3)	16 (12/4)	13 (13/0)

UPW (ours): Universal Parallel WaveNet

SDPW: Speaker-dependent Parallel WaveNet

3,124

UPW, SDPW

Utt. (all unseen)

Vocoder systems

Comparison with speaker-dependent

vocoders

MUSHRA results per voice

Speaker Dedicated PW

Proposed Universal PW

MUSHRA	Recording	SDPW	UPW
All internal	69.68	57.92	58.70
British Eng. / F / Adult	71.64	65.69	67.67
Aus. Eng. / M / Adult	73.52	68.37	68.32
Spanish / F / Adult	69.06	60.27	61.17
Indian Eng. / F / Adult	77.19	62.22	66.95
*US Eng. / M / Senior	70.40	57.65	60.12
*US Eng. / M / Child	62.31	51.26	51.99
US Eng. / M / Adult	68.58	52.63	55.46
French / F / Senior	72.53	54.82	56.35
US Spanish / F / Adult	73.71	48.07	48.37

P-value 0.000 0.000 1.000

UPW

Relative

84.24%

94.45%

Comparison with speaker-dependent

vocoders

MUSHRA results per style		MUSHRA	Recording	SDPW	UPW
		All Internal	69.68	57.92	58.70
		Emotional	71.59	60.74	61.40
		Neutral	69.13	58.53	58.73
		Conversational	58.65	43.54	47.61
		Long-form reading	68.60	56.69	55.46
())	· ·))	News briefing	75.24	56.29	59.86
		Singing	71.94	49.96	56.87
Speaker Dedicated PW	Proposed Universal PW				

Samples presented with Copyright 2021, Amazon.com, Inc. or its affiliates. All Rights Reserved

Comparison with other multi-speaker

vocoders

Test set statistics

Test set	Recording quality	# Voices (seen / unseen)	# Styles (seen / unseen)	# Lang. (seen / unseen)
Internal	Very high	19 (15/4)	2 (1/1)	14 (14/0)
LibriTTS	High	30	1	1
clean		(0/30)	(1/0)	(1/0)
LibriTTS	Medium	30	1	1
other		(0/30)	(1/0)	(1/0)
Common	Low	300	1	15
Voice		(0/300)	(1/0)	(14/1)

UWRNN: Universal WaveRNN

PWGAN: Parallel WaveGAN

WGlow: WaveGlow

300 300 300 UPW, UWRNN, PWGAN, WGlow

Utt. (all unseen)

1,700

Vocoder systems

Comparison with other multi-speaker vocoders

• MUSHRA results

MUSHRA	Recording	PWGAN	WGlow	UWRNN	UPW	Relative	P-value
Internal	66.81	56.02	50.09	61.83	63.35	94.82%	0.000
LibriTTS clean	70.42	67.40	66.72	68.30	69.56	98.77%	0.000
LibriTTS other	») 68.91 🕬	65.04	⊲∞) 64.15	্ঞ) 63.83	<∞)67.28	97.64%	0.000
Common Voice	64.84	57.84	58.67	54.87	58.07	89.56%	0.015

Conclusions

- Universal neural vocoder based on Parallel WaveNet with additional conditioning network called Audio Encoder.
- Trained on multi-speaker multi-lingual speech dataset. •
- Capable of synthesising a wide range of voices, styles, and languages, and particularly suitable for scaling up production of real-time TTS
- Based on large-scale evaluation, our universal vocoder outperforms • speaker-dependent vocoders overall even for unseen speakers.
- Extensive studies benchmarking several existing neural vocoder • architectures in terms of naturalness and universality

Thank you for joining!

alexa

We would love to answer any questions. Feel free to contact us at Adam Gabryś (gabrysa@amazon.com) Viacheslav Klimkov (vklimkov@amazon.com)

