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Overview

We study positive definite kernels for permutation/ranking data.
I They are weighted (and high-order) extensions of the Kendall

kernel [1], allowing to weight differently the contributions of
different items, e.g., to focus more on the top-ranked items.

I They are (symmetric,) positive definite, and invariant to shuffling of
index of items to be ranked.

I They can be computed fast in O(n ln(n)) operations.
I Weights can be learned systematically in a data-driven way.

Notations and Preliminaries

I A permutation σ is a 1-to-1 mapping of [1, n] to itself.
I The symmetric group Sn is the set of all such permutations

endowed with the composition operation.
I A positive definite (p.d.) kernel on Sn is a function K : Sn × Sn→ R

if there exists a Euclidean embedding Φ : Sn→ RD such that
K(σ, σ′) = 〈Φ(σ),Φ(σ′)〉 .

I A p.d. kernel K on Sn is right-invariant if for any σ, σ′ and π ∈ Sn, it
holds that K (σ, σ′) = K (σπ, σ′π). A right-invariant kernel is
invariant to shuffling of index of items to be ranked.

Background: The Kendall Kernel Kτ [1]

Take the Kendall embedding:
Φτ(σ) =

(
1σ(i)<σ(j)

)
1≤i,j≤n ∈ Rn×n ,

then the Kendall kernel is defined by the induced inner product:

Kτ(σ, σ
′) = 〈Φτ(σ),Φτ(σ

′)〉 =
∑

1≤i,j≤n
1σ(i)<σ(j)1σ′(i)<σ′(j) .

Remark. The Kendall kernel Kτ amounts to the Kendall’s τ correlation
[3] up to constant shift and scaling (by taking 2Kτ/

(
n
2

)
− 1).

Theorem (Kendall kernel [1, 2]). Kτ is p.d., right-invariant, and can
be computed in O(n ln(n)) operations.

Related Work: Weighted Kendall’s τ

Given a weight function w : [1, n]2 → R, different weighted versions of
the Kendall’s τ correlation have been proposed:∑

1≤i,j≤n
w(σ(i), σ(j))1σ(i)<σ(j)1σ′(i)<σ′(j) [4]∑

1≤i,j≤n
(w(σ(i), σ(j)) + w(σ′(i), σ′(j)))1σ(i)<σ(j)1σ′(i)<σ′(j) [5]

∑
1≤i,j≤n

w(σ(i), σ(j))
pσ(i) − pσ′(i)
σ(i)− σ′(i)

pσ(j) − pσ′(j)
σ(j)− σ′(j)

1σ(i)<σ(j)1σ′(i)<σ′(j) [6]

Note that [4] reduces to the average precision correlation coefficient [7]
by taking hyperbolic rank discounts w(i, j) = 1/(j − 1). However, these
functions are either not symmetric (hence not p.d.) [4, 6], or not p.d. [5].

The Weighted Kendall Kernel

Given a weight matrix U ∈ Rn×n, take the weighted Kendall embedding:
ΦU(σ) =

(
Uσ(i),σ(j)1σ(i)<σ(j)

)
1≤i,j≤n ∈ Rn×n ,

then the weighted Kendall kernel reduces to

KU(σ, σ′) =
〈
ΦU(σ),ΦU(σ′)

〉
=
∑

1≤i,j≤n
Uσ(i),σ(j)Uσ′(i),σ′(j)1σ(i)<σ(j)1σ′(i)<σ′(j) .

Remark. Interesting choices of U include:
I Top-k: Ua,b = 1 iff a, b ≤ k, for rank threshold k ∈ [1, n].
I Additive: Uij = ui + uj, for rank discounts u ∈ Rn.
I Multiplicative: Uij = uiuj, for rank discounts u ∈ Rn.

In general, a systematic way to constructing a right-invariant, p.d.,
weighted Kendall kernel is as follows:
Theorem (Weighted Kendall kernel). Let W : N2 × N2 → R be a p.d.
kernel on N2, then the function KW : Sn × Sn→ R defined by

KW (σ, σ′) =
∑

1≤i,j≤n
W ((σ(i), σ(j)), (σ′(i), σ′(j)))1σ(i)<σ(j)1σ′(i)<σ′(j)

is a right-invariant p.d. kernel on Sn. If W is rank-1, KW reduces to KU .
Remark. Interesting general choices of W include:
I Average: W ((σ(i), σ(j)), (σ′(i), σ′(j))) = min{σ(i), σ′(i)}/n.

Theorem (Kernel trick). The weighted Kendall kernels can be com-
puted inO(n ln(n)) for top-k, additive, multiplicative, or average weights.
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Learning the Weights

How to choose the pairwise position weights Ua,b? We propose to
optimize them in a data-driven way in a supervised context.
Lemma. Let us define the weighted embedding and kernel by

ΦU(σ) =
(
Uσ(i),σ(j)

)
1≤i,j≤n ∈ Rn×n ,

GU(σ, σ′) =
〈
ΦU(σ),ΦU(σ′)

〉
,

then GU reduces to KU when U ∈ Rn×n is zero in diagonal and lower-
triangular, or is skew-symmetric (up to constant shift and scaling).
Theorem (Learning the weights). Let us consider linear functions
over the embedding ΦU with coefficients B ∈ Rn×n, we have

hU,B(σ) :=
〈
B,ΦU(σ)

〉
=
〈
U,ΦB(σ−1)

〉
(1a)

=
〈

vec(U)⊗ (vec(B))> ,Πσ ⊗ Πσ

〉
, (1b)

where (Πσ)ij = 1i=σ(j) is the permutation representation.
Remark. The weights U and coefficients B can be learned jointly by
solving a non-convex optimization via
I Alternative optimization (1a).
I Low-rank approximation (1b), e.g., [8].

High-order Kernels

In order to consider three-way comparison (or higher-order in general),
given a order-3 weight tensor U ∈ Rn×n×n, let us define the order-3
weighted embedding and kernel by

ΦU(σ) =
(
Uσ(i),σ(j),σ(k)

)
1≤i,j,k≤n ∈ Rn×n×n

GU(σ, σ′) =
〈
ΦU(σ),ΦU(σ′)

〉
.

The three-way position weights Ua,b,c can also optimized in a data-driven
way, due to the following results almost identical to the order-2 case.
Theorem (Learning the high-order weights). Let us consider linear
functions over the embedding ΦU with coefficients B ∈ Rn×n×n, we have

hU ,B(σ) :=
〈
B,ΦU(σ)

〉
=
〈
U ,ΦB(σ−1)

〉
= 〈U ⊗ B,Πσ ⊗ Πσ ⊗ Πσ〉 .

Numerical Experiments: Eurobarometer Survey Data
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Left: Classification accuracy of predicting age group (>/<40yo) of >12k participants ranking the
importance of n = 6 sources of information. Right: Weights learned via low-rank approximation [8].


