The Weighted Kendall and High-order Kernels for Permutations

Yunlong Jiao¹, Jean-Philippe Vert² ¹Department of Statistics & Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ²MINES ParisTech & Institut Curie & Ecole Normale Supérieure, PSL Research University, Paris, France

Overview

We study positive definite kernels for permutation/ranking data.

- They are weighted (and high-order) extensions of the Kendall kernel [1], allowing to weight differently the contributions of different items, e.g., to focus more on the top-ranked items.
- They are (symmetric,) positive definite, and invariant to shuffling of index of items to be ranked.
- ▶ They can be computed fast in $O(n \ln(n))$ operations.
- Weights can be learned systematically in a data-driven way.

Notations and Preliminaries

- \blacktriangleright A permutation σ is a 1-to-1 mapping of [1, n] to itself.
- \blacktriangleright The symmetric group \mathbb{S}_n is the set of all such permutations endowed with the composition operation.
- ▶ A positive definite (p.d.) kernel on \mathbb{S}_n is a function $K : \mathbb{S}_n \times \mathbb{S}_n \to \mathbb{R}$ if there exists a Euclidean embedding $\Phi : \mathbb{S}_n \to \mathbb{R}^D$ such that

$$K(\sigma, \sigma') = \langle \Phi(\sigma), \Phi(\sigma') \rangle$$
.

▶ A p.d. kernel K on \mathbb{S}_n is right-invariant if for any σ, σ' and $\pi \in \mathbb{S}_n$, it holds that $K(\sigma, \sigma') = K(\sigma \pi, \sigma' \pi)$. A right-invariant kernel is invariant to shuffling of index of items to be ranked.

Background: The Kendall Kernel K_{τ} [1]

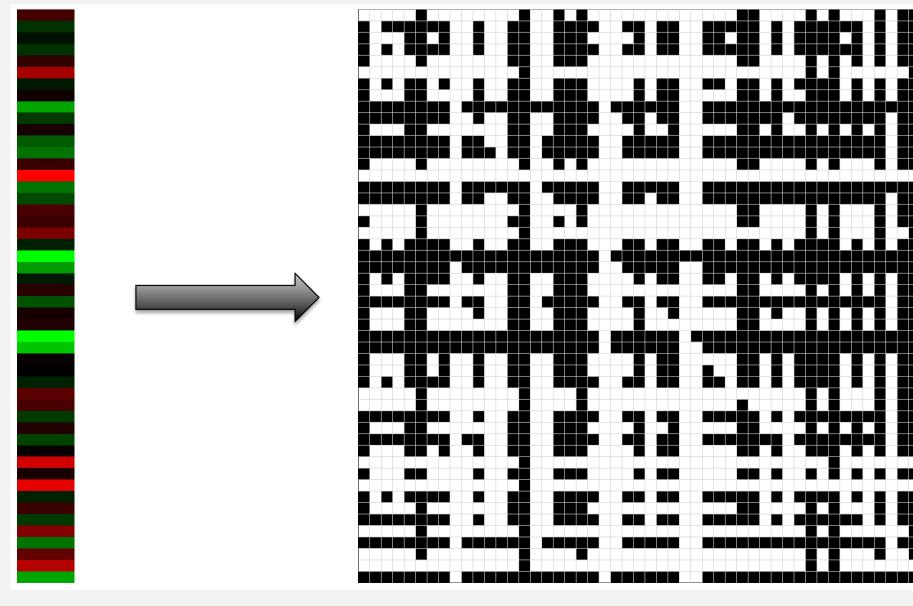
Take the Kendall embedding:

 $\Phi_{\tau}(\sigma) = \left(\mathbb{1}_{\sigma(i) < \sigma(j)}\right)_{1 \le i, j \le n} \in \mathbb{R}^{n \times n},$

then the Kendall kernel is defined by the induced inner product:

 $K_{\tau}(\sigma, \sigma') = \langle \Phi_{\tau}(\sigma), \Phi_{\tau}(\sigma') \rangle = \sum \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}.$

Remark. The Kendall kernel K_{τ} amounts to the Kendall's τ correlation [3] up to constant shift and scaling (by taking $2K_{\tau}/\binom{n}{2}-1$). **Theorem (Kendall kernel [1, 2]).** K_{τ} is p.d., right-invariant, and can be computed in $O(n \ln(n))$ operations.



Related Work: Weighted Kendall's τ

Given a weight function $w : [1, n]^2 \to \mathbb{R}$, different weighted versions of the Kendall's τ correlation have been proposed:

> $\sum_{1 \le i,j \le n} w(\sigma(i),\sigma(j)) \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}$ $1 \leq i,j \leq n$

 $\sum_{1 \le i,j \le n} \left(w(\sigma(i), \sigma(j)) + w(\sigma'(i), \sigma'(j)) \right) \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}$ [5] $1 \le i, j \le n$

 $\sum_{1 \le i,j \le n} w(\sigma(i),\sigma(j)) \frac{p_{\sigma(i)} - p_{\sigma'(i)}}{\sigma(i) - \sigma'(i)} \frac{p_{\sigma(j)} - p_{\sigma'(j)}}{\sigma(j) - \sigma'(j)} \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}$ [6]

Note that [4] reduces to the average precision correlation coefficient [7] by taking hyperbolic rank discounts w(i, j) = 1/(j - 1). However, these functions are either not symmetric (hence not p.d.) [4, 6], or not p.d. [5].

The Weighted Kendall Kernel

Given a weight matrix $U \in \mathbb{R}^{n \times n}$, take the weighted Kendall embedding: $\Phi^{U}(\sigma) = \left(U_{\sigma(i),\sigma(j)} \mathbb{1}_{\sigma(i) < \sigma(j)} \right)_{1 \le i,j \le n} \in \mathbb{R}^{n \times n},$

then the weighted Kendall kernel reduces to $K_U(\sigma, \sigma') = \left\langle \Phi^U(\sigma), \Phi^U(\sigma') \right\rangle = \sum U_{\sigma(i), \sigma(j)} U_{\sigma'(i), \sigma'(j)} \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}.$

Remark. Interesting choices of U include:

- ► Top-k: $U_{a,b} = 1$ iff $a, b \leq k$, for rank threshold $k \in [1, n]$.
- ► Additive: $U_{ij} = u_i + u_j$, for rank discounts $u \in \mathbb{R}^n$.
- Multiplicative: $U_{ij} = u_i u_j$, for rank discounts $u \in \mathbb{R}^n$.

In general, a systematic way to constructing a right-invariant, p.d., weighted Kendall kernel is as follows: **Theorem (Weighted Kendall kernel).** Let $W : \mathbb{N}^2 \times \mathbb{N}^2 \to \mathbb{R}$ be a p.d.

kernel on \mathbb{N}^2 *, then the function* $K_W : \mathbb{S}_n \times \mathbb{S}_n \to \mathbb{R}$ *defined by*

 $K_W(\sigma, \sigma') = \sum W\left((\sigma(i), \sigma(j)), (\sigma'(i), \sigma'(j))\right) \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}$

is a right-invariant p.d. kernel on \mathbb{S}_n . If W is rank-1, K_W reduces to K_U . **Remark.** Interesting general choices of W include: • Average: $W((\sigma(i), \sigma(j)), (\sigma'(i), \sigma'(j))) = \min\{\sigma(i), \sigma'(i)\}/n$.

Theorem (Kernel trick). The weighted Kendall kernels can be computed in $O(n \ln(n))$ for top-k, additive, multiplicative, or average weights.

References

- Jiao and Vert. "The Kendall and Mallows kernels for permutations." IEEE TPAMI, 2018. Knight. "A computer method for calculating Kendall's tau with ungrouped data." JASA, 1966. [2] Kendall. "A new measure of rank correlation." *Biometrika*, 1938. [3] Shieh. "A weighted Kendall's tau statistic." *Statistics & Probability Letters*, 1998. [4]
- Vigna. "A weighted correlation index for rankings with ties." WWW, 2015. [5]
- Kumar and Vassilvitskii. "Generalized distances between rankings." WWW, 2010. [6]
- Yilmaz, et al. "A new rank correlation coefficient for information retrieval." SIGIR, 2008.
- Le Morvan and Vert. "Supervised quantile normalisation." *arXiv:1706.00244*, 2017. [8]

Learning the Weights

How to choose the pairwise optimize them in a data-driven Lemma. Let us define the weight $\Phi^U(\sigma) = (U_{\sigma})$

$$G_U(\sigma,\sigma)$$

then G_U reduces to K_U when triangular, or is skew-symmetri Theorem (Learning the weig over the embedding Φ^U with co $h^{U,B}(\sigma) := /R$ $\Delta^{U,B}(\sigma)$

where $(\Pi_{\sigma})_{ij} = \mathbb{1}_{i=\sigma(j)}$ is the per **Remark.** The weights U and ϕ solving a non-convex optimizat Alternative optimization (1a).

Low-rank approximation (1b), e.g., [8].

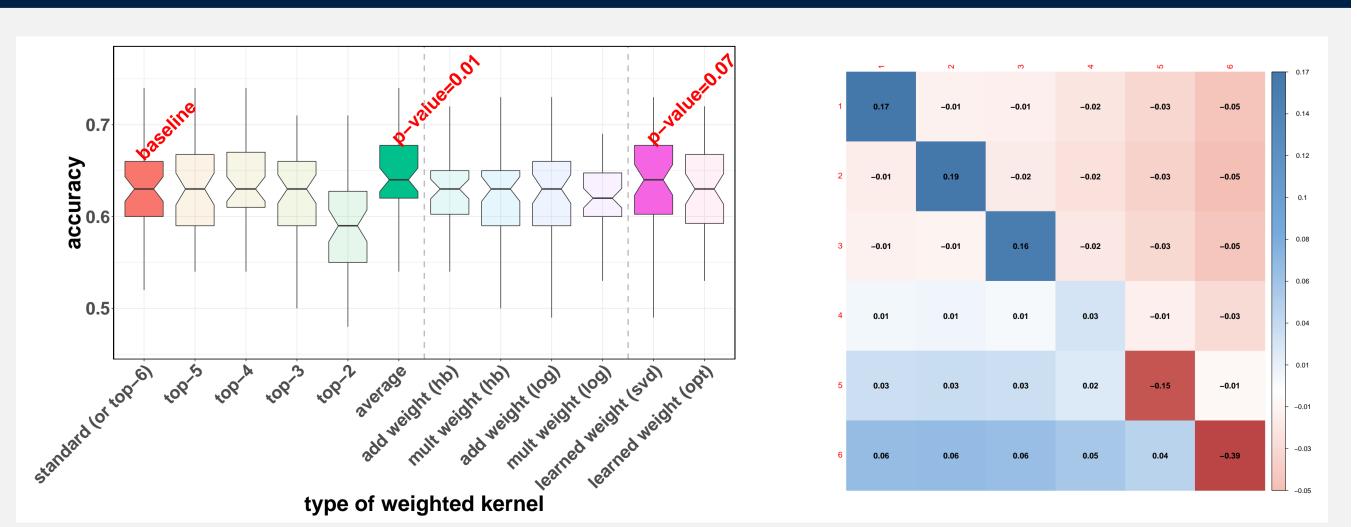
High-order Kernels

In order to consider three-way comparison (or higher-order in general), given a order-3 weight tensor $\mathcal{U} \in \mathbb{R}^{n \times n \times n}$, let us define the order-3 weighted embedding and kernel by

$$\Phi^{\mathcal{U}}(\sigma) = \left(\mathcal{U}_{\sigma(i),\sigma}\right)$$

The three-way position weights $\mathcal{U}_{a,b,c}$ can also optimized in a data-driven way, due to the following results almost identical to the order-2 case. **Theorem (Learning the high-order weights).** Let us consider linear functions over the embedding $\Phi^{\mathcal{U}}$ with coefficients $\mathcal{B} \in \mathbb{R}^{n \times n \times n}$, we have $h^{\mathcal{U},\mathcal{B}}(\sigma) := \langle \mathcal{B}, \Phi^{\mathcal{U}}(\sigma) \rangle = \langle \mathcal{U}, \Phi^{\mathcal{B}}(\sigma^{-1}) \rangle = \langle \mathcal{U} \otimes \mathcal{B}, \Pi_{\sigma} \otimes \Pi_{\sigma} \otimes \Pi_{\sigma} \rangle .$

Numerical Experiments: Eurobarometer Survey Data



Left: Classification accuracy of predicting age group (>/<40yo) of >12k participants ranking the importance of n = 6 sources of information. **Right:** Weights learned via low-rank approximation [8].

position weights $U_{a,b}$? We proposed way in a supervised context.	e to
ighted embedding and kernel by	
$\left(\sigma_{\sigma(i),\sigma(j)}\right)_{1\leq i,j\leq n}\in\mathbb{R}^{n\times n},$	
$\sigma') = \left\langle \Phi^U(\sigma), \Phi^U(\sigma') \right\rangle ,$	
$U \in \mathbb{R}^{n imes n}$ is zero in diagonal and lo	
ric (up to constant shift and scaling).	
ghts). Let us consider linear funct	tions
coefficients $B \in \mathbb{R}^{n imes n}$, we have	
$\langle U(\sigma) \rangle = \langle U, \Phi^B(\sigma^{-1}) \rangle$	(1a)
$U) \otimes \left(\operatorname{vec}(B) \right)^{\top}, \Pi_{\sigma} \otimes \Pi_{\sigma} \right\rangle ,$	(1b)
ermutation representation.	
coefficients B can be learned jointl	y by
ation via	

 $,\sigma(j),\sigma(k)$ $\Big)_{1\leq i,j,k\leq n} \in \mathbb{R}^{n\times n\times n}$ $G_{\mathcal{U}}(\sigma, \sigma') = \langle \Phi^{\mathcal{U}}(\sigma), \Phi^{\mathcal{U}}(\sigma') \rangle$.