The Weighted Kendall and High-order Kernels for Permutations

Yunlong Jiao!, Jean-Philippe Vert*

'Department of Statistics & Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
‘MINES ParisTech & Institut Curie & Ecole Normale Supérieure, PSL Research University, Paris, France

Overview

We study positive definite kernels for permutation/ranking data.

» They are weighted (and high-order) extensions of the Kendall
kernel [1], allowing to weight differently the contributions of
different items, e.g., to focus more on the top-ranked items.

» They are (symmetric,) positive definite, and invariant to shuffling of
iIndex of items to be ranked.

» They can be computed fast in O(nIn(n)) operations.
» Weights can be learned systematically in a data-driven way.

A permutation o is a 1-to-1 mapping of [1, n] to itself.
» The symmetric group S,, is the set of all such permutations
endowed with the composition operation.

» A positive definite (p.d.) kernel on S, Is a function K : S, x S,, =& R
if there exists a Euclidean embedding @ : S,, — R” such that

K(o,0') = (®(0), ®(c")) -

» A p.d. kernel K on S, is right-invariant if for any o,0’ and = € S,,, it
holds that K (0,0") = K (om,o'w). A right-invariant kernel is
invariant to shuffling of index of items to be ranked.

Background: The Kendall Kernel & [1]

Take the Kendall embedding:

CI)T(O-) — (]la(i)<a(j))1§i7j§n S Rnxn)
then the Kendall kernel is defined by the induced inner product:

Ko(0,0) = (D:(0), 2(0")) = 3 Toiiyeotylotieots)
1<e,9<n
Remark. The Kendall kernel K- amounts to the Kendall's = correlation
[3] up to constant shift and scaling (by taking 2K/ (}) — 1).
Theorem (Kendall kernel [1, 2]). K. is p.d., right-invariant, and can
be computed in O(nIn(n)) operations.

|
|

Related Work: Weighted Kendall’s 7

Given a weight function w : [1,n)* — R, different weighted versions of
the Kendall's = correlation have been proposed:

Z UJ(O'(Z), U(j))]la(i)<0(j)]la’(i)<0’(j) [4]

1<2,9<n
> (w(o(i),0(j)) +w(o'(i),0'(5))) Loti)<a() Lot(i) <o) [5]
1<1,9<n
. Po(i) = Po'(i) Po(j) — Po'(j)
w(o (), o(7 , —— ~Loi)<o(i)Loiiy<o'(5) [6]
1<@Z,;<n 000 oo () — o) L=t L <ot

Note that [4] reduces to the average precision correlation coefficient [/]
by taking hyperbolic rank discounts w(i, j) = 1/(5 — 1). However, these
functions are either not symmetric (hence not p.d.) [4, 6], or not p.d. [3].

The Weighted Kendall Kernel

Given a weight matrix U € R"*", take the weighted Kendall embedding:

DY (0) = (Us(i)oti)Lotiy<o() 1i j<n € R,

then the weighted Kendall kernel reduces to

Ky(o,0') = (27(0),2"(0")) = > UstiyotjUstiro'ti) Loti<ot Lottiy<o')

1<2,9<n

Remark. Interesting choices of U include:

» Top-k:U,, =1iff a,b <k, for rank threshold & € [1, n|.

> Additive: U;; = u; + u;, for rank discounts u € R".

» Multiplicative: U;; = u;u;, for rank discounts u € R".

In general, a systematic way to constructing a right-invariant, p.d.,
weighted Kendall kernel is as follows:

Theorem (Weighted Kendall kernel). Let W : N* x N> — R be a p.d.
kernel on N*, then the function Ky : S,, x S,, — R defined by

Kw(o,0')= > W((a(i),0(j)),(0'(i),0'()) Loti<o Lotiy<oy
1<2,9<n
Is a right-invariant p.d. kernel on S,,. If W is rank-1, Ky, reduces to K.
Remark. Interesting general choices of W include:

> Average: W ((a(i),0(7)), (0'(1),0'(j))) = min{o (i), 0'(2) }/n.

Theorem (Kernel trick). The weighted Kendall kernels can be com-
puted in O(nln(n)) for top-k, additive, multiplicative, or average weights.
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Learning the Weights

How to choose the pairwise position weights U,;? We propose to
optimize them in a data-driven way in a supervised context.
Lemma. Let us define the weighted embedding and kernel by

" (o) = (Ua(i),a(j))lgz-’jgn c R"™*",
Gy(o,0') = (¢"(0), @7 (")) ,
then Gy reduces to Ky when U € R"*" s zero In diagonal and lower-
triangular, or is skew-symmetric (Up to constant shift and scaling).

Theorem (Learning the weights). Let us consider linear functions
over the embedding oV with coefficients B € R"*", we have

h'P (o) = (B,d"%(0)) = (U, ®"(c7 ")) (1a)
_ <VeC(U) ® (vee(B)) T 11, & n0> | (1b)

where (11,);; = 1,_,(;) IS the permutation representation.
Remark. The weights U and coefficients B can be learned jointly by
solving a non-convex optimization via

» Alternative optimization (1a).
» Low-rank approximation (1b), e.g., [8].

High-order Kernels

In order to consider three-way comparison (or higher-order in general),
given a order-3 weight tensor U4 € R™"™*"  let us define the order-3
weighted embedding and kernel by

U NXNXn
(o) = (av(i)aa(j)ﬂ(k))1§¢,j,k§n c R
Gu(o,0') = (P“(0), ®"(0")) .
The three-way position weights ¢4, , . can also optimized in a data-driven
way, due to the following results almost identical to the order-2 case.

Theorem (Learning the high-order weights). Let us consider linear
functions over the embedding ®“ with coefficients B € R™"*" we have

P (g) = (B, ®"(0)) = (U, CDB(U_l)> =(URB,I, I, RI1,) .

Numerical Experiments: Eurobarometer Survey Data

type of weighted kernel

Left: Classification accuracy of predicting age group (>/<40yo) of >12k participants ranking the
Importance of n = 6 sources of information. Right: Weights learned via low-rank approximation [8].



