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Ranking aggregation and Kemeny's rule



The ranking aggregation problem can be encoutered in
many fields of the scientific literature

v

Elections in Social choice theory

v

Meta search engines

v

Competitions rankings

v

Analysis of biological data

v

Natural Language Processing



Ranking aggregation

Problem:
How to summarize a collection of rankings into one ranking?

Input

> Set of items:
» /\/ Rankings of the form :

Output
A global order (" consensus’) o on the 1 objects.



Ranking aggregation

Ranking /1 = -+ =/, on |[n]| <= permutation o on [n] s.t.
o(ij) = J-
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Ranking aggregation

Ranking on <= permutation o on s.t.

What permutation ¢* € G, best represents a given a
collection of permutations (01,...,0y) € GN?

Definition (Consensus ranking (Kemeny, 1959))

A permutation o* € &,, is a best representative of the collection

(01,...,0n) € &N with respect to a metric d on &, if it is a
solution of :
N
miny e, Z d(o,0¢).

t=1



Kemeny's rule

Definition (Kendall's distance)

The Kendalls tau distance between two permutations is equal to
the number of their pairwise disagreements:

dkr(o,m) = Z I{c and 7 disagree on {i,j}}
{ijyclnl

Example

o=123 (1> 2> 3)

7=231(2+ 3+ 1)

— number of desagreements = on 2 pairs (12,13).



Kemeny's rule

Definition (Kendall's distance)

The Kendalls tau distance between two permutations is equal to
the number of their pairwise disagreements:

dkr(o,m) = Z I{c and 7 disagree on {i,j}}
{ijyclnl

Example

o=123 (1> 2> 3)

=231 (2> 3+ 1)

— number of desagreements = on 2 pairs (12,13).

Definition (Kemeny's rule)

N
Mmingee, Z dkt (0, 0t) (1)

t=1



Kemeny's rule

» Social choice justification: Satisfies many voting properties,
such as the Condorcet criterion: if a candidate is preferred to
all others in pairwise comparisons then it is the winner [Young
and Levenglick, 1978]

» Statistical justification: Outputs the maximum likelihood
estimator under the Mallows model [Young, 1988]

» Main drawback: It is NP-hard in the number of votes N
[Bartholdi et al., 1989] even for n = 4 candidates [Dwork et
al., 2001].
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Controlling the distance to a Kemeny consensus
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Previous contributions

» General guarantees for approximation procedures
» Bounds on the approximation cost of procedures

» Conditions for the exact Kemeny aggregation to become
tractable



Contribution

Previous contributions

» General guarantees for approximation procedures
» Bounds on the approximation cost of procedures

» Conditions for the exact Kemeny aggregation to become
tractable

Our approach

e Set of items

e A rankings dataset

o Let a permutation, typically out put by a
computationally efficient aggregation procedure on

Can we give an upper bound d(o,c*) between o and a
Kemeny consensus, by using only tractable quantities?
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Geometric analysis of Kemeny aggregation



Kemeny embedding
The Kemeny embedding is the mapping ¢ : &6, — R() defined by:
¢:o— | sign(o(i)—o()))

1<i<j<n

where sign(x) =1 if x > 0 and 1 otherwise.

Example
1\ — pair 12 1 — pair 12
1/ — pair23 —1/ — pair 23



Kemeny aggregation in R(2)
Definition (Mean embedding)

For Dy = (01,...,0n) € 6N, we define the barycenter:

1 N
6 (D) == 1 >0 (00).
t=1



Kemeny aggregation in R(2)
Definition (Mean embedding)

For Dy = (01,...,0n) € 6N, we define the barycenter:

LN
¢(Dn) =4 PRACHE
=1

Proposition (Barthelemy & Monjardet (1981))

For all 0,0’ € &,

n(n—1)

> and |¢(c) — ¢(c")||* = 4d(0,0"),

lo(o)ll =

and for any dataset Dy = (o1, ...0n) € &N, Kemeny aggregation
(1) is equivalent to the minimization problem

min ||p(c) — (D)2 (2)

ogeG,



Illustration

Figure: Kemeny aggregation for n = 3.

«O» «F»r « =

« =
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Kemeny aggregation in R()

Kemeny aggregation naturally decomposes in two steps:

1. Compute the barycenter ¢(Dy) € R() (complexity O(Nn?))

2. Find the consensus ¢* solution of problem (2)



Main result

For o € &, we define the angle Oy (o) between ¢(c) and ¢(Dy)

by:
_ {(¢(0), $(Dn))
cos(On(0)) = llo()Il (D)’

with 0 < Oy(o) < 7.



Main result

For o € &, we define the angle Oy (o) between ¢(c) and ¢(Dy)
by:

_ {(¢(0), $(Dn))
cos(On(0)) = llo()Il (D)’

with 0 < Oy(o) < 7.

Theorem

Let Dy € 6,’)’ be a dataset, KCpy the set of Kemeny consensuses
and o € &, a permutation. For any k € {0,..., () — 1}, one has
the following implication:

k+1
L = max d(o,0") < k.

cos(On(o)) > /1 B e



Method

We define:

i) = | () sin(6(o) ©
the minimal k € {0,..., (3) — 1} verifying the theorem condition.
Two steps:

» Compute kmin(c; Dy) with Formula (3).

» Then by Theorem 15, d(o,0*) < kmin(c; D) for all Kemeny
consenus o* € Cy.



Application on the sushi dataset

Table: Summary of a case-study on the validity of the method with the
sushi dataset (N = 5000, n = 10). Rows are ordered by increasing kmin
(or decreasing cosine) value.

Voting rule cos(On(0)) | kmin(o)
Borda 0.82 14
Copeland 0.82 14
QuickSort 0.82 14
Plackett-Luce 0.80 15
2-approval 0.74 20
1-approval 0.71 22
Pick-a-Perm 0.40 37
Pick-a-Random 0.28 41
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Geometric interpretation and proof of the main result



Extended cost function

Kemeny aggregation:

min Cy(o) = [[6(0) — ¢(Dw)]*

n

Relaxed problem:

min Cy(x) := [|Ix — ¢(Dn)|%.

XE€



Extended cost function

Kemeny aggregation:

min Cy(o) = [[6(0) — ¢(Dw)]*

n

Relaxed problem:

min Cy(x) := [|Ix — o(Dn) |- (4)

XE€

For any x € S, by denoting R the radius of S, one has:
Cn(x) = R?+ [|¢(Dw)II” = 2R||¢(Dn)|| cos(On(x))-

The level sets of Cy are thus of the form {x € S | On(x) = a}, for
0<a<n



Illustration

Figure: Level sets of Cy
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Lemmas

Lemma (1)

A Kemeny consensus of a dataset Dy is a permutation ¢* s.t:

On(c™) < On(o) for all o € G,,.

We denote by B(x,r) = {x' € R() | [|x" = x|| < r} the (open) ball
of center x and radius r.

Lemma (2)

For x € S and r > 0, one has:

r2

cos(On(x)) > /1 — i Xleérqtigrz)(’r) On(x") > On(x).



[[lustration

Figure: lllustration of Lemma 2 with r taking integer values (representing
possible Kendall's tau distance).



Embedding of a ball

Lemma (3)
Foro € &, and k € {0,7(3)}

¢(Gn\B(o,k)) < S\B(#(0),2Vk +1)
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Numerical experiments



Applicability of the method

We denote by:
> n the number of alternatives
» Dy € GV any dataset
» r any voting rule, and by r(Dy) the consensuses of Dy given
by r
We know that:
d(r(Dn), Kn) < Kmin -

We study the tightness of the bound:

S (r,DN, n) = km,',, - d(r(DN),ICN) .



Results
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Figure: Boxplot of s (r, Dy, n) over sampling collections of datasets
shows the effect from different voting rules r with 500 bootstrapped
pseudo-samples of the APA dataset (n =5, N = 5738).



Predictability of the method

> When n grows, the exact Kemeny consensus Ky, hence
s(r,Dy, n) quickly becomes computationally impermissible.

» Once we have an approximate ranking r(Dy) and kpj, is
identified via our method, the search scope for the exact
Kemeny consensuses can be narrowed down to those
permutations within a distance of kp,;, to r(Dy).

» Notably the total number of such permutations in &, is upper
bounded by ("H;"”:"*l) << |&,| = n! [Wang 2013].
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Figure: Boxplot of ki, over 500 bootstrapped pseudo-samples of the
sushi dataset (n = 10, N = 5000).
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Conclusion

» We have established a theoretical result that allows to control
the Kendall's tau distance between a permutation and the
Kemeny consensuses of any dataset.



Conclusion

» We have established a theoretical result that allows to control
the Kendall's tau distance between a permutation and the
Kemeny consensuses of any dataset.

» This provides a simple and general method to predict, for any
ranking aggregation procedure, how close the outcome on a
dataset is from the Kemeny consensuses.
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Future directions

» The geometric properties of the Kemeny embedding are rich
and could lead to many more results.

» We can imagine ranking aggregation procedures using a
smaller scope for Kemeny consensuses.

> Possible extensions to incomplete rankings.



Thank you
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