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The ranking aggregation problem can be encoutered in
many fields of the scientific literature

I Elections in Social choice theory

I Meta search engines

I Competitions rankings

I Analysis of biological data

I Natural Language Processing



Ranking aggregation

Problem:
How to summarize a collection of rankings into one ranking?

Input

I Set of items: JnK := {1, . . . , n}
I N Rankings of the form : i1 � · · · � in

Output

A global order (”consensus”) σ∗ on the n objects.



Ranking aggregation

Ranking i1 � · · · � in on JnK ⇐⇒ permutation σ on JnK s.t.
σ(ij) = j .

What permutation σ∗ ∈ Sn best represents a given a
collection of permutations (σ1, . . . , σN) ∈ SN

n ?

Definition (Consensus ranking (Kemeny, 1959))

A permutation σ∗ ∈ Sn is a best representative of the collection
(σ1, . . . , σN) ∈ SN

n with respect to a metric d on Sn if it is a
solution of :

minσ∈Sn

N∑
t=1

d(σ, σt).
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Kemeny’s rule

Definition (Kendall’s distance)

The Kendalls tau distance between two permutations is equal to
the number of their pairwise disagreements:

dKT (σ, π) =
∑

{i ,j}⊂JnK

I{σ and π disagree on {i , j}}

Example

σ= 123 (1 � 2 � 3)
π= 231 (2 � 3 � 1)
→ number of desagreements = on 2 pairs (12,13).

Definition (Kemeny’s rule)

minσ∈Sn

N∑
t=1

dKT (σ, σt) (1)



Kemeny’s rule

Definition (Kendall’s distance)

The Kendalls tau distance between two permutations is equal to
the number of their pairwise disagreements:

dKT (σ, π) =
∑

{i ,j}⊂JnK

I{σ and π disagree on {i , j}}

Example

σ= 123 (1 � 2 � 3)
π= 231 (2 � 3 � 1)
→ number of desagreements = on 2 pairs (12,13).

Definition (Kemeny’s rule)

minσ∈Sn

N∑
t=1

dKT (σ, σt) (1)



Kemeny’s rule

I Social choice justification: Satisfies many voting properties,
such as the Condorcet criterion: if a candidate is preferred to
all others in pairwise comparisons then it is the winner [Young
and Levenglick, 1978]

I Statistical justification: Outputs the maximum likelihood
estimator under the Mallows model [Young, 1988]

I Main drawback: It is NP-hard in the number of votes N
[Bartholdi et al., 1989] even for n = 4 candidates [Dwork et
al., 2001].
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Contribution

Previous contributions

I General guarantees for approximation procedures

I Bounds on the approximation cost of procedures

I Conditions for the exact Kemeny aggregation to become
tractable

Our approach

• Set of items JnK := {1, . . . , n}
• A rankings dataset DN = (σ1, . . . , σN) ∈ SN

n

• Let σ ∈ Sn a permutation, typically out put by a
computationally efficient aggregation procedure on DN .

Can we give an upper bound d(σ, σ∗) between σ and a
Kemeny consensus, by using only tractable quantities?
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Kemeny embedding

The Kemeny embedding is the mapping φ : Sn → R(n2) defined by:

φ : σ 7→


...

sign(σ(i)− σ(j))
...


1≤i<j≤n

where sign(x) = 1 if x ≥ 0 and 1 otherwise.

Example

123 7→

( )1 → pair 12

1 → pair 13

1 → pair 23
, 132 7→

( )1 → pair 12

1 → pair 13

−1 → pair 23



Kemeny aggregation in R(n
2)

Definition (Mean embedding)

For DN = (σ1, . . . , σN) ∈ SN
n , we define the barycenter:

φ (DN) :=
1

N

N∑
t=1

φ (σt) .

Proposition (Barthelemy & Monjardet (1981))

For all σ, σ′ ∈ Sn,

‖φ(σ)‖ =

√
n(n − 1)

2
and ‖φ(σ)− φ(σ′)‖2 = 4d(σ, σ′),

and for any dataset DN = (σ1, . . . σN) ∈ SN
n , Kemeny aggregation

(1) is equivalent to the minimization problem

min
σ∈Sn

‖φ(σ)− φ(DN)‖2 (2)
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Illustration

Figure: Kemeny aggregation for n = 3.



Kemeny aggregation in R(n
2)

Kemeny aggregation naturally decomposes in two steps:

1. Compute the barycenter φ(DN) ∈ R(n2) (complexity O(Nn2))

2. Find the consensus σ∗ solution of problem (2)



Main result

For σ ∈ Sn, we define the angle θN(σ) between φ(σ) and φ(DN)
by:

cos(θN(σ)) =
〈φ(σ), φ(DN)〉
‖φ(σ)‖‖φ(DN)‖

,

with 0 ≤ θN(σ) ≤ π.

Theorem

Let DN ∈ SN
n be a dataset, KN the set of Kemeny consensuses

and σ ∈ Sn a permutation. For any k ∈ {0, . . . ,
(n
2

)
− 1}, one has

the following implication:

cos(θN(σ)) >

√
1− k + 1(n

2

) ⇒ max
σ∗∈KN

d(σ, σ∗) ≤ k.
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Method

We define:

kmin(σ;DN) =

⌊(
n

2

)
sin2(θN(σ))

⌋
. (3)

the minimal k ∈ {0, . . . ,
(n
2

)
− 1} verifying the theorem condition.

Two steps:

I Compute kmin(σ;DN) with Formula (3).

I Then by Theorem 15, d(σ, σ∗) ≤ kmin(σ;DN) for all Kemeny
consenus σ∗ ∈ KN .



Application on the sushi dataset

Table: Summary of a case-study on the validity of the method with the
sushi dataset (N = 5000, n = 10). Rows are ordered by increasing kmin

(or decreasing cosine) value.

Voting rule cos(θN(σ)) kmin(σ)

Borda 0.82 14
Copeland 0.82 14
QuickSort 0.82 14

Plackett-Luce 0.80 15
2-approval 0.74 20
1-approval 0.71 22

Pick-a-Perm 0.40 37
Pick-a-Random 0.28 41
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Extended cost function

Kemeny aggregation:

min
σ∈Sn

C ′N(σ) = ‖φ(σ)− φ(DN)‖2.

Relaxed problem:

min
x∈S
CN(x) := ‖x − φ(DN)‖2. (4)

For any x ∈ S, by denoting R the radius of S, one has:

CN(x) = R2 + ‖φ(DN)‖2 − 2R‖φ(DN)‖ cos(θN(x)).

The level sets of CN are thus of the form {x ∈ S | θN(x) = α}, for
0 ≤ α ≤ π
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Illustration

Figure: Level sets of CN



Lemmas

Lemma (1)

A Kemeny consensus of a dataset DN is a permutation σ∗ s.t:

θN(σ∗) ≤ θN(σ) for all σ ∈ Sn.

We denote by B(x , r) = {x ′ ∈ R(n2) | ‖x ′ − x‖ < r} the (open) ball
of center x and radius r .

Lemma (2)

For x ∈ S and r ≥ 0, one has:

cos(θN(x)) >

√
1− r2

4R2
⇒ min

x ′∈S\B(x ,r)
θN(x ′) > θN(x).



Illustration

Figure: Illustration of Lemma 2 with r taking integer values (representing
possible Kendall’s tau distance).



Embedding of a ball

Lemma (3)

For σ ∈ Sn and k ∈ {0, . . . ,
(n
2

)
},

φ (Sn \ B(σ, k)) ⊂ S \ B(φ(σ), 2
√
k + 1)
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Applicability of the method

We denote by:

I n the number of alternatives

I DN ∈ SN
n any dataset

I r any voting rule, and by r(DN) the consensuses of DN given
by r

We know that:
d(r(DN),KN) ≤ kmin .

We study the tightness of the bound:

s (r ,DN , n) := kmin − d(r(DN),KN) .



Results
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Figure: Boxplot of s (r ,DN , n) over sampling collections of datasets
shows the effect from different voting rules r with 500 bootstrapped
pseudo-samples of the APA dataset (n = 5,N = 5738).



Predictability of the method

I When n grows, the exact Kemeny consensus KN , hence
s (r ,DN , n) quickly becomes computationally impermissible.

I Once we have an approximate ranking r(DN) and kmin is
identified via our method, the search scope for the exact
Kemeny consensuses can be narrowed down to those
permutations within a distance of kmin to r(DN).

I Notably the total number of such permutations in Sn is upper
bounded by

(n+kmin−1
kmin

)
<< |Sn| = n! [Wang 2013].
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Figure: Boxplot of kmin over 500 bootstrapped pseudo-samples of the
sushi dataset (n = 10,N = 5000).



Outline

Ranking aggregation and Kemeny’s rule

Controlling the distance to a Kemeny consensus

Geometric analysis of Kemeny aggregation

Geometric interpretation and proof of the main result

Numerical experiments

Conclusion



Conclusion

I We have established a theoretical result that allows to control
the Kendall’s tau distance between a permutation and the
Kemeny consensuses of any dataset.

I This provides a simple and general method to predict, for any
ranking aggregation procedure, how close the outcome on a
dataset is from the Kemeny consensuses.
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Future directions

I The geometric properties of the Kemeny embedding are rich
and could lead to many more results.

I We can imagine ranking aggregation procedures using a
smaller scope for Kemeny consensuses.

I Possible extensions to incomplete rankings.
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Thank you
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