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Introduction

@ Recommender system,
e.g. Collaborative
Filtering.
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Introduction

© Recommender system, @ Learn from converted rankings,
e.g. Collaborative e.g., gene expression data
Filtering. analysis for leukemia

classification [Tan et al., 2005].

.\_/..‘ @shcwMr.A'spreferencetothesystem _ Data: n x p matrix (p >> n)-
- similar p
Mr.A ~
efe! :‘:
gmmen& y, )
“\f/ simuils:rrsp:‘;‘e”rlace
recommended Aearch ~ Rule: if SPTANI > CD33
riﬁ then ALL; else AML.
(2) database search - _ — Accuracy: 93.80% (LOOCV).

database
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© Data type
— Rankings and permutations.
@ Methods

— Computationally efficient kernels for total rankings, partial
rankings and rankings converted from quantitative vectors.

© Experiments
— High-dimensional classification in biomedical applications.
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Total Rankings and Permutations

@ A total ranking is a strict ordering of n items {x1,x2,...,Xn},
Xiyp = Xiy 7= 0 > X, -
@ A permutation is a rearrangement of n indices,

o:{1,2,...,n} = {1,2,...,n} such that o(i) # o(j) for i # j.
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Total Rankings and Permutations

@ A total ranking is a strict ordering of n items {x1,x2,...,Xn},
Xiy = Xiy = = X, -
@ A permutation is a rearrangement of n indices,
o:{1,2,...,n} = {1,2,...,n} such that o(i) # o(j) for i # j.

@ A total ranking is equivalently represented by a permutation
if 0 maps item index to item rank, e.g.,

X2 = X4 = X3 > X1

2 4 31 — index
4 3 2 1 — rank

— (1) =1,0(2) = 4,0(3) = 2,0(4) = 3.

o=
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Kendall tau Distance for Permutations

e Kendall tau distance [Kendall, 1938] Eg.
counts the number of discordant pairs indexe |1l 2 3 4
between permutations, i.e., ranko |2 3 4 1
rank o’ |3 1 4 2
= 1) '(i)>0’(j)
i<j

+ oy loycoqy - | M(@0) =1+1+0=2
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Kendall tau Distance for Permutations

e Kendall tau distance [Kendall, 1938] Eg.
counts the number of discordant pairs indexe |1l 2 3 4
between permutations, i.e., ranko |2 3 4 1
ranko’ |3 1 4 2
= Lo /(i)>a'(j)
i<j

+ oy loycoqy - | M(@0) =1+1+0=2

@ The number of concordant pairs
between permutations is

(o) = (3) -l | el = Mol s
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Kendall and Mallows Kernels for Permutations

E'g'1
indexe |1 2 3 4
rank o |2 3 4 1
@ The Kendall tau coefficient is defined ranko’ |3 1 4 2
as
4 -2 1
Yy / AN _ -
K.(0.0") = ne(o,o’) - ng(o,o’) ‘ K. (o,0') = % —3
(5)
@ The Mallows measure is defined for
any A > 0 by
/ Ky(o,0')=e 2 A>0
Kiy(o,0') = g Anal(a.0)

9/25



Kendall and Mallows Kernels for Permutations

E.g.,
indexe|1 2 3 4
ranko |2 3 4 1
o The Kendall tau coefficient is defined ranko’ |3 1 4 2
as
4-2 1
K- (o, 0/) _ ne(o, UI) ; ng(o, O'/) ‘ K- (o, U,) _ — _ :

()

@ The Mallows measure is defined for
any A > 0 by

Kiy(o,0') = g Ana(@:0")

Theorem (Main theorem)

These two similarity measures for permutations are positive definite

kernels.
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Kendall and Mallows Kernels for Permutations

@ The Kendall kernel is defined as

ne(o,0') — ng(c,c’)
(3)

@ The Mallows kernel is defined for any A > 0 by

K,\>),(G, o) = e Ana(@0’)

KT(U’ OJ) =

Theorem (Main theorem)

These two kernels for permutations are positive definite.

Proof.
Consider the explicit kernel mapping

oS, — R(g),a = <5g”(‘7(i) N U(j))>1§i<jﬁn.

The Kendall and Mallows kernel correspond respectively to a linear
and Gaussian kernel on a (3)-dimensional embedding of Sp,. O
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Kendall and Mallows Kernels for Permutations

@ The Kendall kernel is defined as

ne(o,0’) — ng(o,o0’)
— )
(2)

@ The Mallows kernel is defined for any A > 0 by

KT(U7 OJ) =

Ky(o,0") = e Analeo")

Theorem (Main theorem)

These two kernels for permutations are positive definite.

Theorem ([Knight, 1966])

These two kernels for permutations can be evaluated in O(nlog n)
time.
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Convolution Kendall Kernel for Partial Rankings

@ Two interesting types of partial rankings are interleaving
partial ranking

Xiy = Xjy = = Xi, k<n.
and top-k partial ranking
Xip = Xiy = -+ = Xj = Xeest, Kk < n.

@ Partial rankings can be uniquely represented by a set of
permutations compatible with all the observed partial orders.

13/25



Convolution Kendall Kernel for Partial Rankings

@ Two interesting types of partial rankings are interleaving
partial ranking

Xiy = Xjy = = Xi, k<n.
and top-k partial ranking
Xip = Xiy = -+ = Xj = Xeest, Kk < n.

@ Partial rankings can be uniquely represented by a set of
permutations compatible with all the observed partial orders.

Theorem

For these two particular types of partial rankings, the convolution
kernel [Haussler, 1999] induced by Kendall kernel

KR R) = g 3 3 K

oc€ERJ'ER

can be evaluated in O(k log k) time.

v
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Stabilized Kendall Kernel for Quantitative Vectors

) e Kendall mapping for quantitative vectors is
J discrete-valued and very sensitive to “almost
: ties”, i.e.,

igff%XIQB ¢:R”%RGXMA<L0W—HWW)

1<i<j<n
@ We propose a noise-corrupted kernel mapping instead
(similarly to [Muandet et al., 2012])
\U :E(D :(]P) X X 7]P) v "',) .
(0 =Eo(xt o) = (B(%>%)-P(i<%))

X

o Kendall kernel stabilized alternative is given by

G (x,x) = ¥(x) " W(x') = EK,(%,%).
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Mallows Kernel vs. Diffusion Kernel over S,

o Diffusion kernel
—L, . —" [Kondor and Lafferty, 2002] is

s / \\/ / defined by
(O e

Yo \/ where A is the graph laplacian.
@ Mallows kernel is written as
/ _
1ir K,\)>,(O', O'I) —e Ang(o,0) 7
Figure : Cayley graph of S;. where ng(o,0’) = dg(o,o") the

shortest path distance on graph.
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Gene Expression Data

Datasets
Dataset No. of features No. of samples (training/test)
G G
Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse)
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse)
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis)
Colon Tumor 2000 40 (Tumor) 22 (Normal)
Lung Cancer 1 7129 24 (Poor Prognosis) 62 (Good Prognosis)
Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM)
Medulloblastoma 7129 39 (Failure) 21 (Survivor)
Ovarian Cancer 15154 162 (Cancer) 91 (Normal)
Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor)
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse)
Methods

@ Kernel machines Support Vector Machines (SVM) and Kernel
Fisher Discriminant (KFD) with Kendall kernel, linear kernel,
Gaussian RBF kernel, polynomial kernel.

@ Top Scoring Pairs (TSP) classifiers [Tan et al., 2005].

@ Hybrid scheme of SVM + TSP feature selection algorithm.
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Kendall kernel SVM

o Competitive

accuracy!
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Results

BC1
@ |
o
Q|
e Kendall kernel SVM
~ o Competitive
accuracy!
g © | age
& o @ Insensitive to C
0 parameter!
o —— SVMlinearALL
—— SVMKdtALL
—— SVMpolyALL
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] ---- KFDlinearALL
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Kendall kernel SVM

o Competitive
accuracy!

@ Insensitive to C
parameter!

@ No feature
selection!
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MB
o Kendall kernel Support
™ H—— SVMkdtALLalt--exact .
© |— SVMkdtALLalt-—MCapprox (D=1) Measure Machines

—— SVMkdtALLalt-—MCapprox (D=3)

——  SVMKdtALLalt-—MCapprox (D=5) [M uandet et al., 201 2]
% _|— SVMkdtALLalt-——MCapprox (D=7)

5 SVMkdtALLalt--MC D=9

S SumkdALL spme(=) o Im proved

accuracy!
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21/25



Conclusion

Poster Session 6E Tonight! I

IF you are dealing with ranking-related problems,

IF your problem can be formulated in a way that some kernel
machine can cope with,

DO throw Kendall and Mallows kernel into that kernel machine!
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